Novos smarta pennor gör comeback
Äntligen gör Novo Nordisk smarta insulinsprutor, eller pennor, comeback: NovoPen 6 och NovoPen Echo Plus. De gjorde en entré i Read more
Closer a cure for insulin dependent diabetes? Well, not close but progresses within stem cells have been made 2018, and researchers are making progresses continuously. In humans, without immunosuppression – which is a key for a viable cure. Over time we take baby steps, even though it´s sometimes are two steps ahead and one back. To cure people with insulin dependent diabetes there are many challenges, as I wrote a few days ago 1. A cure for all people and not for a subgroup of people for some reason, must restore insulin secretion, we must know what causes the autoimmunity and solve it, and we don´t want to use immunosuppression (anti-rejection drugs). Of course, it must be safe and well tolerated, not tumorigenic (rocket science), preferable not a solution that must be repeated that often (as sometimes todays donor transplants of islets) and naturally, that can mimic the healthy pancreas in case of insulin secretion, but perhaps as well other hormones is needed even though those are not affected of the autoreactive attack (only beta cells are destroyed, even though located in the same islets). Mice are cured ~500 times by now and research needs funding to proceed to humans, even if experimental. It might be so that when we see a cure, it´s step by step, meaning first a solution for people with severe complications or hypoglycemic unawareness for example.
Recently a new star popped up in the race for a cure, that have deliberately been under the radar for the past five years. A private company, Seraxis, that has cured mice. Mice are not human, but their idea is very exciting. This is a small review of the most promising project within stem cells and where we are.
There is no doubt for my Swedish followers that I have the biggest faith in stem cells, even though much still are unknown.
Cells are the key to our bodies functionalities and ensure that our heart beats, brain works fine, the kidneys rinse´s our blood etc etc. Stem cells are the origin of these specialized cells and stem cells are not yet specialized. You find stem cells in embryos and in human, and in humans there are stem cells in the bone marrow, in the nervous system, brain, umbilical cord, in the amniotic fluid, the teeth etc. The main duty for the stem cells are to replace damaged tissue and replace dead cells with new ones. Stem cells are kind of our guards that try to make sure we are healthy and protect us to age prematurely. Every organ has their own unique type of stem cells, 2.
Why they are of such an interest for medical research, as well as for diabetes, are:
“Stem cells are distinguished from other cell types by two important characteristics. First, they are unspecialized cells capable of renewing themselves through cell division, sometimes after long periods of inactivity. Second, under certain physiologic or experimental conditions, they can be induced to become tissue- or organ-specific cells with special functions.” 3.
The idea to restore insulin production is to be able to produce new insulin-producing beta cells and put them in people with lack of beta cells. Since we can control the fate of the reprogramming of stem cells, and have unlimited resources due to the capacity to divide, stem cells holds a great potential.
The stem cells that are of most interest as potential cure for insulin dependent diabetes are hESC (human embryonic stem cells) and iPSC (induced pluripotent stem cells). A common myth about hESC is that they are derived from a woman´s body, this is not the case. Today there are three main sources of hESC (4):
Induced means affect and make something happens, pluripotent means “having the ability to give rise to all of the various cell types of the body.” (5). The idea of using iPSC is to avoid immunosuppression or using low dose, since the iPSC´s can be our own cells, and there is still a ethical dilemma with hESC.
There are many other stem cells but this article is about hESC and iPSC.
In 1962 Sir John Gurdon cloned a frog, and his pioneering work showed for the first time that a mature and specialized cell can return to an immature state, contrary to popular belief. His work showed that a mature cell keeps genetic information needed to form all types, even though it´s specialized. (6)
In 2006, Shinya Yamanaka and colleagues shocked the world when they managed to convert first mouse cells and the year after, human skin cells to iPSC. (7)
The importance of these guys research is enormous, and they shared the Nobel Prize in medicine in 2012 (8).
Differentiation is a several steps process that specialize a cells functions. This is made in a dish in a lab and is a very advanced technology. Simplified, genes are first added to the specialized cell and within a few weeks the cell is converted to an iPSC. Researchers are working hard to try to control the differentiation, and there are some open protocols available (“recipes”) how to decide the fate of the cell.
Stem cells was have been used as treatment since decades, not common though. The first known use of stem cells is a bone marrow transplantation in 1968 2. The potential is huge and stem cells may in the future be used for several incurable diseases. Unfortunately this has led to a million dollar industry in some countries, most well-known are Mexico with several clinics (long and great article by San Francisco Chronicle from August 2018 “None of the treatments the clinics offer have been shown to be safe or effective. None have been approved by the FDA. They’re not backed by decades of laboratory and animal studies or by rigorous testing in humans.” (9).
Diseases that in the future might be treated by stem cells are i.e. heart disease, Parkinson’s, neurological diseases, multiple sclerosis etc etc.
Negative with iPSC is that it´s very expensive to individualize iPSC´s for every human. Yamanaka said 2017 (10), one line for one patients can cost up to one million dollar, which have led to that Japan is creating a iPSC-bank with “super donors”. This is done at other places as well. So even though iPSC are promising, perhaps we must use encapsulation anyhow.
First paper that got huge global attention was Professor Douglas Melton in October 2014, 11. It took Doug 15 years to turn hESPC to beta cells. Interesting was that he and his team cured mice (yes, still not humans) with both hESC and iPSC. This was cited all over the world, I think I personally saw 200 articles. For Sweden, I spread this myself to National Diabetes Association, researchers and newspapers. We need attention to get funding.
After the progress in 2014 Doug and his team in 2016 reported progress in differentiation from iPSC, a process taking approximately six weeks. After repeated trials they kept the cells in the mice for 174 days. Picture A shows a glucose in healthy mice vs diabetes induced, picture B is an intravenous glucose tolerance test performed 174 days after transplantation and C is C-peptide (12):
Later 2016 they showed more details and the glucose responsiveness was low of about 35%, a functional islet of Langerhans has ~200% according to Swedish Professor Per-Ola Carlsson. Still very interesting result 13.
Doug is working on using a pouch to protect the cells from the immune system that would allow nutrients in and insulin out. An article in Nature March 2018 said he expect to start clinical trials within three years (14). Doug has started Semma Therepeutics to commercialize the solution if it works. Semma has got huge donations, as well from the industry within diabetes (Big Pharma? Not really: 15, 16). Semma is named after Dougs two children, Sam and Emma, who both have autoimmune diabetes since many years. It´s been quiet for a while from the team, I assume we soon will get an update.
Soon after Melton et als work, Viacyte from San Diego started a human clinical trial with their capsule VC-01, today named PEC-Encap, using hESC that develops to functional beta cells after they are put in their capsule. I shared this exciting news everywhere in Sweden, this was the first trial with hESC derived beta cells as a potential cure for insulin dependent diabetes, the third with hESC approved in approved in USA and the sixth in the world by then. 19 patients were included with two different versions of PEC-Encap (sizes), VC-01-20 and VC-01-250. Low levels of engraftment due to a foreign body giant cell response was observed but the cells survived, proliferated and matured to cells capable of producing insulin and other hormones (17). The trial was paused and improvement has been made as Viacyte is making product improvements in collaboration with W.L. Gore & Associates. In September 2018 Swiss CRISPR Therapeutics and Viacyte announced a collaboration for gene-edited stem cell therapy (18), and in November Viacyte communicated commitments of $100M for their attempts to drive forward (19). The idea is to find a therapy that does not require immunosuppression.
Two persons involved in Doug Meltons work later was Professor Daniel Andersson and Professor Robert “Bob” Langer from MIT Koch Institute. They were involved in the development of the encapsulation, and had for years tried 774 different alginates (hydrogel from brown algae) to find a protective material that provide sufficient oxygenation as well as allows nutrients moving through the “membrane”. Summer 2017 these two guys co-funded Sigilon Therapeutics, it seems they continue on their own and not with Dougs team (20). Interesting is that Eli Lilly, again a company that should have much too loose from a functional cure (how was it with Big Pharma, again….?) invested heavily in the company. “Sigilon will receive an upfront payment of $63 million, an equity investment, and more than $400 million in milestone payments to take the Afibromer devices containing stem-cell-derived pancreatic beta cells through clinical trials.” 21
In August 2018 the researchers showed very promising results in macaques. They tried seven of the capsules that worked well in mice, and the main purpose was to avoid immunosuppression. After earlier trials in mice they saw that macrophages attack and impact the islets, which has led to inflammation. They tried different locations, and tried to avoid the importance of insufficient oxygenation and need for nutrients. They chose macaques without diabetes to avoid hyperglycemia induced insulin resistance, and also to avoid the metabolic profiles between macaques and humans. Macaques needs four times as much insulin vs humans to maintain normal glucose levels. They used islets from macaques, not stem cell derived islets, to see eventual anti-rejection. They retrieved islets 1 and 4 months after transplantation, and they found one capsule (Z1-Y15) that worked better than the others. After 1 month the cell viability in that capsule was 93% and after 4 months 90%. The picture below shows the islets at transplantation in four non human primates (A), after one month (B) and in three of the macaques after four months (C):
They wrote; “Encapsulated islets from one primate (CN8800) were retrieved at 4 months and presented with fibrosis and non-viable islets. At the time of transplantation, this same lot of encapsulated islets was also transplanted into a separate primate (CN8801) that yielded viable islets without fibrosis when retrieved at 4 months. These distinct results using the same lot of material/islets lead us to hypothesize that the cause of fibrosis in the one primate may be related to undocumented differences in the transplant procedure or to natural animal variability when using non-inbred NHP models.”
The researchers have performed a small study but with a great result. The islets remains glucose responsive during a long period and without immunosuppression. It´s non human primates without diabetes, but more alike humans than mice. They found that omentum seems to be the best placement. In August when I wrote an article about this at my Swedish blog, I asked Professor Daniel Anderson a few questions:
I asked if they continue to collaborate with Doug Melton or on their own, I didn´t get an answer on that one.
The paper from August 2018 23.
Professor Per-Ola Carlsson at Uppsala University performed a study in humans, published last year, with an encapsulation (also alginate) from Israeli Beta O2 – without immunosuppression. Read here why this is not necessary 24. Initially the plan was to enroll eight participants but it ended with only four, all have had autoimmune diabetes at least 30 years. All got one encapsulation except from one patient who got two, and they kept it 3-6 months. Every patient got two ports to deliver oxygen with a machine once a day, and the islets were from donors – not stem cells. The result below, A is C-peptide, B is A1c and C is insulin need:
At first sight it looks negative but it is experimental to evaluate safety and acceptance of the body. Insulin secretion and glucose regulation didn´t work properly, but the capsule was safe and quite well tolerated by the body and the cell survival was good. As far as I know this is the first study with a capsule in humans with autoimmune diabetes that haven´t used immunosuppression. Study here 25.
Sernova Corporation is a company from London, Ontario Canada (quite cool that London is also the birth place of insulin, where Frederick Banting got the idea almost 100 years ago). Sernova has a cell pouch sized as a credit card where beta cells can be placed. The cell pouch is thought to be well accepted of the body and the implantation is a simple procedure, just under the skin. They have done smaller studies in animals with great results, and got FDA approval for a study in humans end of 2017. Sernova enrolled first patient 20th of December 26. Sernova believes anti-rejection drugs is not necessary, or very low dose. I asked them for a Swedish article Spring 2018 how they plan to do in this study, and they replied that anti-rejection drugs will be given to patients at latest three weeks after start and continue for three weeks. Safety first of course. Cell pouch will first be tested in patients with hypoglycaemia unawareness in six months. At this point a decision will be made with regards to the transplant of a second islet dose with subsequent safety and efficacy follow up. The study is conducted at University of Chicago and they will use donor islets. Technology here 27, they got some local media attention this Spring 28.
Diabetes Research Institute in Miami have several great researchers. A few days ago, they actually posted that their director, Dr. Camillo Ricordi, was recognized as the world’s leading expert in islet transplantation 29. DRI has developed a BioHub which is very interesting but still experimental, like a mini organ 30. The considered site in the body is similar as to what Sigilon-researchers found in their latest study, the omentum. They have a FDA approval for a phase I/II study where they will use donor islets and anti-rejection drugs, and place their biologic scaffold in omentum.
DRI has tested the BioHub in three patients, under development searching for the best site and the best material. In 2015 Wendy Peacock with long-term diabetes was the first to receive the BioHub. She have had autoimmune diabetes since she was 16 years old and within 17 days post transplantation she got off insulin, but according to some articles she still need certain control of diet and exercise. In the end of 2015 a 41 year old man in Milan, Italy, with diabetes since age 11, was the second to receive a BioHub. 31. The third is unknown and DRI replied to me “we are not aware of how many patients outside DRI that might have had this procedure”. Still, these patients take immunosuppressive drugs so not a viable cure. DRI has though a very interesting solution.
A few weeks ago I got very surprised. I have followed *everything” within diabetes research globally for years, and discussed many papers with several researchers around the world. If any specific area, that would be stem cells. So I wondered, how could I possibly have missed Seraxis, present in USA and Singapore? I told them, when I asked them some questions regarding their papers, and they replied “We have deliberately remained under the radar for the past 5 years in order to avoid losing focus from our goal of finding a therapy. With big media attention comes sometimes a lot of “distractions” that we wanted to avoid. However, we feel we have reached a point in our development where we will need to work with partners to be able to make SR-01 a reality for patients.”
What they have done as a different to all above projects and others I don´t mention, who in case of iPSC start with skin cells in the differentiation process, Seraxis managed to take islets from one single human and re-programmed them to iPSC-state. These cells are characterized and are banked and can differentiate into human islets when they need them, a process that takes about 28 days. As I wrote above, if manage to re-program to iPSC-state the source is unlimited due to the capacity of cell division.
Carole Welsch, Ph.D., M.B.A and Chief Business Officer at Seraxis, told me that their differentiation protocol is more efficient than many others, I can´t judge about that. They claim their cells have a better response profile to glucose, and interesting is that they have their own biomedical device which they call SeraGraft, that carry the cells. SeraGraft is ~12 x 12 cm and very thin, and Seraxis as well use the omentum as a transplant site. SeraGraft doesn´t stimulate fibrosis and immune reaction, very important, but this is still in mice so remains to be confirmed in humans. I asked for more details about SeraGraft but Carole can´t disclose that. SR-01, Seraxis cells and SeraGraft together, doesn´t need anti-rejection drugs, indeed intriguing. Carole responded on some of my questions;
“Because these cells are fully matured, they do not have tumorigenic potential, a fact proved by animal studies. In addition, the encapsulation does prevent any escape of the mature cells away from the implant site. Lastly, even if the cells were outside of the device, the host immune system would recognize and destroy these allogeneic cells, unlike with autologous cells. This is a fail-safe plan and is stringently evaluated to meet regulatory requirements to treat otherwise healthy human patients.”
If the above is confirmed in primates or humans that is huge. One thing that makes me curious, the fact that they started with islets, does that ensure the higher quality? Even though the cell is forced back to a stem cell, do they have a memory what they once were? I asked Carole; “Our cells, which were derived from islets, could remember where they came from and more easily return to that state. We haven’t demonstrated this experimentally.” It might be so, still to be proven. Interesting is that seventy-four lines were derived from the humans donor islets but only two robustly expressed makers of pancreatic fate after differentiation. Seraxis is currently working on a fund raise to complete studies needed to go to FDA and search approval for a human trial. More papers will be published 2019, will be very interesting to follow. This is a picture and comparison with human islets and Seraxis cells:
In November Seraxis published a review (32) where they comments status of today, and that they see this method replace current transplants with donor cells. “Initially inclusion/exclusion criteria for stem cell‐derived islets will be similar to those for cadaveric islet transplantation, until the risks and benefits are better understood. Demonstrated safety and efficacy with stem cell‐derived islets is likely to lead to islet transplantation offered to a larger population of patients with type 1 diabetes than currently treated with cadaveric islets.”
Site 33.
One paper 34.
The final word above from the new review summarize status in general quite well, small steps, safety first. iPSC is very exciting for many diseases but still unknown. Actually it´s tested recently in humans for the first time, after a trial in patients with age-related macular degeneration (AMD) halted in Japan 2014. The researchers found “genetic abnormalities” in the cells at one of two study participants, and they were only implanted at one of the persons. As a first human trial I think it was a very positive result later though “…did not improve a patient’s vision, but did halt disease progression” (35, 36, 37). The second application approved for patients Spring 2018, for people with heart disease (38).
Much are unknown with iPSC as well as hESC, and the potential as a cure for autoimmune diabetes. Other interesting projects are ongoing around the world, stem cells are most promising according to me. We will see a cure, not close in time though. Many hurdles remains. Diabetes research needs funding, start with reading this article, share it and donate. Thanks.
References:
Hans Jönsson
Diabethics
https://www.facebook.com/diabethics
https://www.instagram.com/diabethics
Närmare ett botemedel för autoimmun diabetes? Inte nära men flera framsteg med stamceller har gjorts under i flera år och inte minst under 2018. På människor, utan immunosuppressiva läkemedel (avstötningsmedel– en nyckel för att funktionellt botemedel. Sett över tid tar vi kliv framåt, även om det emellanåt är två steg fram och ett bakåt. För att bota människor med insulinbehandlad diabetes är det många utmaningar, som jag skrev för ett par dagar sedan 1. Ett botemedel för alla, och inte en liten grupp av människor av någon anledning, måste återställa insulinsekretionen, vi måste veta vad som orsakar autoimmuniteten och lösa det problemet, och det kan inte innefatta immunosuppression. Givetvis, det måste vara säkert, tolereras av kroppen, inte tumörogent (kärnfysik), föredragsvis en lösning som inte måste upprepas ofta (som exempelvis dagens ö-cellstransplantationer) och naturligtvis, som kan efterlikna en frisk och fungerande bukspottskörtel med insulinfrisättning, men kanske även andra hormoner även om de cellerna inte angrips i det autoreaktiva angreppet (endast betaceller angrips, trots lokaliserade i samma cellöar). Möss är botade ~500 gånger och diabetesforskningen behöver medel för att gå vidare till humanförsök, även experimentella. Det kan komma bli så att då vi ser ett botemedel, så är det steg för steg, med betydelsen först för människor med allvarliga komplikationer eller omedvetna hypoglykemier exempelvis.
Nyligen poppade en ny stjärna upp i kapplöpningen för ett botemedel, som bokstavligt har gått under radarn senaste fem åren. Ett privat företag, Seraxis, som har botat möss med diabetes. Möss är inte människor, men deras idé är väldigt spännande. Det här en liten översiktsartikel över de mest spännande projekten inom stamceller och var vi står idag.
På min blogg har jag en uppsjö av artiklar i ämnet, samlade under taggen/kategorin stamceller, här 2.
Celler är nyckeln till våra kroppars funktioner och säkerställer att vårat hjärta slår, hjärnan fungerar, att njurarna renar vårt blod etc etc. Stamceller är ursprunget till dessa specialiserade celler och stamceller är inte ännu specialiserade. Stamceller finns i embryon och hos människor, och hos människor finns de i benmärgen, nervsystemet, hjärnan, navelsträngen, fostervattnet, tänderna etc. Huvudsaklig uppgiften stamceller har är att ersätta skadad vävnad och ersätta döda celler med nya. Stamceller är en slags väktare som försöker se till att vi är friska och skyddar oss mot att åldras för snabbt. Alla organ har sin egna unika typ av stamcell 3.
Varför de är av sådant stort intresse för medicinforskning, likväl för diabetes, är:
“Stem cells are distinguished from other cell types by two important characteristics. First, they are unspecialized cells capable of renewing themselves through cell division, sometimes after long periods of inactivity. Second, under certain physiologic or experimental conditions, they can be induced to become tissue- or organ-specific cells with special functions.” 4
Idén med att återskapa insulinproduktionen är att ta fram nya insulinproducerande betaceller och sätta tillbaka dem hos människor som saknar dessa. Eftersom vi kan bestämma ödet av omprogrammerade stamceller, och har obegränsad tillgång genom deras möjlighet att dela sig oändligt många gånger, så är potentialen stor.
De stamceller som är av störst intresse för ett presumtivt botemedel för insulinbehandlad diabetes är hESC (humana embryonala stamceller) och iPSC (inducerade pluripotenta stamceller). En vanligt förekommande myt om hESC är att de har tagits från en kvinna, så är inte fallet. Idag finns tre källor till hESC (5):
Inducerad betyder att påverka att något sker, pluripotent betyder “ha förmågan att bli vilken cell som helst i kroppen” (6).
Idén med att använda iPSC är främst att undvika immunosuppression alternativt låg dos, eftersom iPSC skulle kunna vara våra egna celler. Dessutom kvarstår ett etiskt dilemma med hESC, lite märkligt tycker jag.
Det finns flera andra typer av intressanta stamceller men denna artikel handlar om hESC och iPSC.
1962 klonade Sir John Gurdon en groda, och hans banbrytande arbeta visade för första gången att en mogen och specialiserad cell kan backas till ett omoget läge, tvärtom mot vad man trodde. Hans forskning visade att en mogen cell behåller genetisk information nödvändig att skapa alla celltyper, trots att den blivit en specialiserad cell (7)
2006 chockade Shinya Yamanaka med kollegor världen när de först lyckades konvertera musceller och året efter, humana hudceller, til iPSC (8, 9)
Betydelsen av dessa mäns forskning är enormt, och de delade på Nobelpriset i medicin 2012 (10).
Differentiering kallas processen om flera steg som specialiserar en cells funktion. Detta görs i skål i ett lab och är väldigt avancerat. Grovt förenklat, gener adderas först till den specialiserade cellen och inom ett par veckor är den konverterad till en iPSC. Forskare arbetar hårt för att kunna kontrollera differentieringen, och det finns en del öppna protokoll tillgängliga (”recept”) hur man bestämmer cellens öde.
Stamceller har använts som behandling i flera decennier, dock inte vanligt förekommande. Den första kända behandlingen med stamceller är en benmärgstransplantation 1968, 3. Potentialen är dock enormt och stamceller kan i framtiden komma att användas för flera idag obotliga sjukdomar. Tyvärr har detta lett bidragit en miljonindustri i vissa länder, mest välkänt är Mexico med flera kliniker (lång och bra artikel från San Francisco Chronicle i augusti i år ”inga av behandlingarna som klinikerna erbjuder har visat sig vara säkra eller effektiva. Inga är godkända av FDA. De saknar stöd i decenniers forskning i lab, på djur och rigorösa studier på människor.” 11).
Sjukdomar som i framtiden kan komma behandlas med stamceller är exempelvis hjärtsjukdomar, Parkinsons, neurologiska sjukdomar, MS etc etc.
Negativt med iPSC är att det är väldigt dyrt att invididualisera iPSC för varje människor. Yamanaka sa 2017 (12), att en linje för en person kan kosta upp till en miljon dollar vilket har lett till att Japan skapat en iPSC-bank från ”superdonatorer”. Detta görs även på ett par platser till. Så även om iPSC är lovande måste vi kanske använda en kapsel i alla fall.
Första studien som rönte uppmärksamhet med iPSC och diabetes var Professor Doug Melton i oktober 2014, 13. Det tog honom 15 år att konvertera hESC till betaceller. Intressant var Doug med kollegor botade möss (ja, inte människor med andra ord) med både hESC och iPSC. Detta framsteg var enormt och citerades runt hela världen, jag tror jag själv läste 200 artiklar. I Sverige så spred jag detta till Diabetesförbundet, forskare och flera av våra stora tidningar, detta var innan jag startade Diabethics. Det skrevs om även i Sverige, vi behöver uppmärksamhet för att få medel till forskningen. I min kategori/tagg stamceller är många av artiklarna om Doug eller berör hans forskning.
Efter framstegen 2014 har teamet publicerat flera artiklar med framsteg gällande differentieringen från iPSC, en process som tar ungefär sex veckor. Bland annat 2016 då de efter upprepade försök lät mössen ha cellerna i 174 dagar. Bild A visar blodsockret hos friska möss vs möss med inducerad diabetes, bild B är ett intravenöst glukostoleranstest gjort 174 dagar efter transplantation och bild C är C-peptid (14):
Senare under 2016 visade de mer detaljer och glukosresponsen var låg om ca 35%, en fungerande Langerhansk cellö har ~200% enligt professor Per-Ola Carlsson vid Uppsala universitet. Fortsatt mycket intressant naturligtvis 15.
Doug arbetar med att använda en kapsel för att skydda cellerna från immunförsvaret och som tillåter näringsämnen och syre in och insulin ut. I en artikel i Nature i mars 2018 säger han att humanförsök förväntas starta inom tre år (16).
Doug startade Semma Therepeutics för att kommersialisera produkten om den fungerar. Semma har fått stora finansiella bidrag, likväl som från industrin (Big Pharma? Nä: 17, 18). Semma är namngett efter Dougs två barn, Sam och Emma, som båda har autoimmun diabetes sedan många år. Det har varit tyst en tid från teamet, jag antar att det inte dröjer så länge förrän vi får höra mer.
Kort efter Melton och hans kollegors arbete, startade Viacyte från San Diego kliniska försök med deras kapsel VC-01, idag benämnd PEC-Encap, där de använder hESC som utvecklas till funktionella betaceller efter att de satts i kapseln och transplanterats. Jag delade denna fantastiska nyhet överallt i Sverige, detta var det första humanförsöket med betaceller framtagna av hESC som ett potentiellt botemedel mot insulinbehandlad diabetes, det tredje med hESC som blivit godkänt i USA och det blott sjätte i världen vid tidpunkten. 19 patienter inkluderades med två versioner av PEC-Encap (storlekar), VC-01-20 och VC-01-250. Mindre grad av införlivande och acceptans sågs på grund av angrepp av makrofager men cellerna överlevde, delade sig och utvecklades till celler kapabla att producera insulin och andra hormoner (19). Försöket avbröts för att göra förbättringar tillsammans med W.L. Gore & Associates. I september 2018 annonserades ett samarbete mellan Viacyte och schweiziska CRISPR Therapeutics för genediterad stamcellsterapi (20), och i november kommunicerade Viacyte bidrag om 100 miljoner dollar för att fortsätta detta intressanta projekt (21). Idén är att finna ett sätt som inte kräver avstötningsmedel.
I augusti i år kommunicerades väldigt lovande försök av forskare som ingått i teamet med Doug Melton. Två av de som arbetat med kapseln verkar onekligen ha lämnat Doug Melton och har fortsatt på egen hand. De testade en kapsel på primater, med syftet att testa kroppens reaktion och utan immunosuppression, resultatet var mycket bra trots försöksdjur och inte människor samt få till antalet. Dessutom en längre period, oerhört lovande. Även de har startat ett bolag för kommersialisering, Sigilon Therapeutics, som fått enormt finansiellt stöd av Eli Lilly (Big Pharma igen? Eller så inte).
Jag ställde lite frågor till professor Daniel Andersson inför min artikel om detta i augusti.
Jag frågade även om samarbetet med Doug, den frågan förblev obesvarad, väntat.
Avslutningsvis skriver forskarna att deras metod kan komma användas i flera avseende, exempelvis vid behov att precis och lokalt distribuera läkemedel till specifika platser i kroppen, för behandling av andra sjukdomar som Parkinsons, hemofoli (blödarsjuka) och andra.
Mer utförligt om detta spännande här 23.
Uppsala universitet är långt gången inom stamceller för diabetesbehandling, och professor Per-Ola Carlsson har lett ett försök med israeliska Beta O2´s kapsel. På fyra patienter med autoimmun diabetes sattes kapseln, utan immunosuppression, och planen var initialt att utöka till totalt åtta patienter. Studien fortsatte inte som planerat med ytterligare fyra deltagare då ingen metabol fördel syntes, dvs nivåer av C-peptid och reglering av glukos. Efter avslutade försök fanns fullt fungerande cellöar men också motsatt. I betacellerna produceras även amylin som frisätts med insulin. Forskarna skriver att om amylin inte transporteras från cellöarna, exempelvis just pga att de inte införlivats i kroppen tillräckligt, kan amylin ”stacka” och blockera cellöarnas funktion. Innan transplantation sågs inga problem med amylin men efter borttagande av kapseln, och att detta kan ha haft betydelse. Forskarna spekulerar vidare i storleken på kapslarna och alginatets tjocklek spelar in. Trots problematiken gällande insulinsekretion så visar studien ett par extremt viktiga saker:
Min artikel 24.
Sernova Corporation är ett företag från London, Ontario Kanada (lite småcoolt att detta är ett par km från där Banting isolerade, ”upptäckte”, insulinet för nästan 100 år sedan). Sernova har en ”cellpåse”, en kapsel. Som är ungefär som ett kreditkort stort och där kan betaceller placeras. De tror att den accepteras väl av kroppen och ingreppet är enkelt, just under huden. De har gjort små lyckosamma studier på djur och i artikeln ovan, samma som om försöket i Uppsala med Beta O2´s kapsel, skriver jag mer utförligt om dem. Den 20 december sattes första kapseln på en patient 25. Detta är också tänkt att fungera utan immunosuppression eller låg dos. Jag frågade dem tidigare om detta och vid kommande humanförsök kommer de ge immunosuppression senast tre veckor efter försökets start samt fortsätta i tre veckor. Studien genomförs vid University of Chicago och de använder cellöar från donatorer.
Diabetes Research Institute i Miami har flera duktiga forskare. För ett par dagar sedan postade de ör övrigt att deras forskningschef, Dr Camillo Ricordi, rankas som nummer 1 inom öcellstransplantationer 26. DRI har utvecklat en BioHub som är väldigt intressant med experimentell, som ett miniorgan 27. Placeringen är tänkt att vara motsvarande Sigilon-forskarnas ovan, i omentum (bukhinnevävnad). De har FDA-godkännande för en fas I/II-studie där de kommer använda cellöar från doantorer och immunosuppression. De har testat sin BioHub i tre patienter, och de fortsätter studera mest lämpad placering och material. 2015 blev Wendy Peacock den första patienten att få denna lösning, med diabetes sedan hon var 16 år. Inom 17 dagar blev hon frin från insulin, men enligt flera artiklar så ställs krav på diet och motion, med det sagt är det ingen ultimat lösning ännu. I slutet av 2015 fick en 41-årig man från Milano BioHuben, han hade haft autoimmun diabetes sedan han var 11 år 28. Den tredje patieinten är okänd, de svarade mig igår “we are not aware of how many patients outside DRI that might have had this procedure”. Dessa tar immunosuppression så inget funktionellt botemedel, men de hare n spännande lösning. Jag har skrivit om dem i många artiklar, här en separat om just BioHub 29.
För ett par veckor sedan blev jag väldigt överraskad. Jag läser absolut allt inom diabetes globalt, sedan länge, och diskuterar många publikationer med flera forskare i hela världen. Om något särskilt område, så är det i sådana fall stamceller. Så, jag blev rätt överraskad, hur kan jag ha missat Seraxis, ett företag baserat i USA och Singapore? Jag berättade detta till dem, då jag ställde lite frågor, och det visade sig vara genomtänkt; “We have deliberately remained under the radar for the past 5 years in order to avoid losing focus from our goal of finding a therapy. With big media attention comes sometimes a lot of “distractions” that we wanted to avoid. However, we feel we have reached a point in our development where we will need to work with partners to be able to make SR-01 a reality for patients.”
Vad de gjort till skillnad från alla alla project ovan inkluderat de jag inte nämner, som med iPSC oftast startar med hudceller, är att Seraxis har lyckats ta cellöar från en enda donator och omprogrammerat dessa tillbaka till iPSC. Cellerna är färdiga, en cellbank i princip, och de kan inom 28 dagar ta fram humana cellöar när de så väl behöver. De har i och med att de väl lyckats backa till iPSC-stadie obegränsad tillgång, som jag skriver initialt i denna artikel är en fördel med just stamceller.
Carole Welsch, Ph.D., M.B.A affärschec på Seraxis, svarade mig att deras protokoll för differentiering är mer effektiv än andras, omöjligt att bedöma. De hävdar även att deras celler har en bättre glukosrespons, och intressant är att de har en egel kapsel som de kallar SeraGraft. SeraGraft är ~12 x 12 cm och mycket tunn, och även Seraxis avser att använda omentum som placering. De säger att SeraGraft inte orsakar någon fibros eller immunreaktion, men hittills endast i möss så återstår att se hos människor. Jag bad om mer information om denna spännande SeraGraft men det kunde Carole inte ännu avslöja, fullt förståeligt. SR-01, Seraxis celler och SeraGraft sammantaget, kräver inte immunosuppression, väldigt spännane. Carole besvarade flera frågor jag hade;
“Because these cells are fully matured, they do not have tumorigenic potential, a fact proved by animal studies. In addition, the encapsulation does prevent any escape of the mature cells away from the implant site. Lastly, even if the cells were outside of the device, the host immune system would recognize and destroy these allogeneic cells, unlike with autologous cells. This is a fail-safe plan and is stringently evaluated to meet regulatory requirements to treat otherwise healthy human patients.”
Om ovan kan bekräftas först på primate och senare på människor är det enormt stort. En sak som gör mig lite nyfiken, eftersom de startar med öceller, kan detta möjligen säkerställa bättre kvalité på slutprodukten? Även om cellerna är backade till stamcells-stadie, har de ett genetiskt minne vad de varit? Jag frågade Carole;
“Our cells, which were derived from islets, could remember where they came from and more easily return to that state. We haven’t demonstrated this experimentally.”
Så möjligen, återstår att bekräfta. Intressant i sammanhanget är att av sjuttiofyra cellinjer som de tog fram endast två blev av bra kvalité och visade tydligt att de blivit pankreatiska öceller efter differentiering. Seraxis arbetar för närvarande med att samla in pengar för att göra kompletterande studier för att gå till FDA för att ansöka om godkännande för humanstudier. Mer publikationer kommer 2019, kommer vara oerhört intressant att följa. Detta är en jämförelsebild mellan humana cellöar och Seraxis framtagna:
I november publicerade Seraxis en review (30) där de kommenterar status idag, och att de ser deras metod kunna ersätta dagens transplantationer med celler från donatorer;
“Initially inclusion/exclusion criteria for stem cell‐derived islets will be similar to those for cadaveric islet transplantation, until the risks and benefits are better understood. Demonstrated safety and efficacy with stem cell‐derived islets is likely to lead to islet transplantation offered to a larger population of patients with type 1 diabetes than currently treated with cadaveric islets.”
Site 31.
One paper 32.
De sista orden ovan från översiktsartikeln summerar statusen ganska väl, små steg, säkerheten först. Det är ett komplext problem. iPSC är väldigt spännande för många sjukdomar men mycket är fortsatt okänt. Faktum är att det nyligen är testat hos människor för första gången, efter att ett försök på patienter med åldersrelaterade förändringar i gula fläcken avbröts 2014. Forskarna upptäckte ”genetiska avvikelser” i celler hos en av de två deltagarna, och ingreppet skedde därför endast på en person. Som första försök på människor tycker jag det ändock var positivt så småningom “…did not improve a patient’s vision, but did halt disease progression” (33, 34, 35).
Det andra försöket för människor godkändes våren 2018, för människor med hjärtsjukdomar (36).
Mycket är ännu okänt med iPSC likväl hESC, och potential som botemedel för autoimmun diabetes. Andra spännande projekt pågår runt världen, för läsare av min blogg i Norden är det ingen hemlighet att jag ser bäst möjligheter för stamceller. Vi kommer se ett botemedel, inte nära i tiden dock. Diabetesforskningen lider och behöver medel, börja med att läsa denna artikel, dela del och skänk en slant. Tack.
Referenser:
Hans Jönsson
Diabethics
https://www.facebook.com/diabethics
https://www.facebook.com/diabethicssverige/
https://www.instagram.com/diabethics
Autoimmune diabetes Stamceller Stem cells